mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models.

نویسندگان

  • Luca Scrucca
  • Michael Fop
  • T Brendan Murphy
  • Adrian E Raftery
چکیده

Finite mixture models are being used increasingly to model a wide variety of random phenomena for clustering, classification and density estimation. mclust is a powerful and popular package which allows modelling of data as a Gaussian finite mixture with different covariance structures and different numbers of mixture components, for a variety of purposes of analysis. Recently, version 5 of the package has been made available on CRAN. This updated version adds new covariance structures, dimension reduction capabilities for visualisation, model selection criteria, initialisation strategies for the EM algorithm, and bootstrap-based inference, making it a full-featured R package for data analysis via finite mixture modelling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Model-Based Clustering, Density Estimation, and Discriminant Analysis Software: MCLUST

Abstract: MCLUST is a software package for model-based clustering, density estimation and discriminant analysis interfaced to the S-PLUS commercial software and the R language. It implements parameterized Gaussian hierarchical clustering algorithms and the EM algorithm for parameterized Gaussian mixture models with the possible addition of a Poisson noise term. Also included are functions that ...

متن کامل

mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation

mclust is a contributed R package for model-based clustering, classification, and density estimation based on finite normal mixture modeling. It provides functions for parameter estimation via the EM algorithm for normal mixture models with a variety of covariance structures, and functions for simulation from these models. Also included are functions that combine model-based hierarchical cluste...

متن کامل

Model-based Methods of Classification: Using the mclust Software in Chemometrics

Due to recent advances in methods and software for model-based clustering, and to the interpretability of the results, clustering procedures based on probability models are increasingly preferred over heuristic methods. The clustering process estimates a model for the data that allows for overlapping clusters, producing a probabilistic clustering that quantifies the uncertainty of observations ...

متن کامل

Model-based clustering and data transformations for gene expression data

MOTIVATION Clustering is a useful exploratory technique for the analysis of gene expression data. Many different heuristic clustering algorithms have been proposed in this context. Clustering algorithms based on probability models offer a principled alternative to heuristic algorithms. In particular, model-based clustering assumes that the data is generated by a finite mixture of underlying pro...

متن کامل

Fully Nonparametric Probability Density Function Estimation with Finite Gaussian Mixture Models

Flexible and reliable probability density estimation is fundamental in unsupervised learning and classification. Finite Gaussian mixture models are commonly used to serve this purpose. However, they fail to estimate unknown probability density functions when used for nonparametric probability density estimation, as severe numerical difficulties may occur when the number of components increases....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The R journal

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2016